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ABSTRACT

An efficient method is given for computing the incomplete beta
function ratio, Ix(a,b), on a high speed digital computer. The

arguments ab, are limited to positive integral multiples of one-

half values over the ranges 1/2 < a ! 108 , 1/2 • b ! 60.

The program has been coded in STRAP for the IB 7030 (STRETCH).
The average computing time for a ten decimal digit value of Ix(a~b)

is 2.6 milliseconds; on an IBM 7090 it would be about 8 milliseconds
per case.
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FOREWORD

The work reported in this publication was done in the Applied
Mathematics Section of the Mathematics Research Group with Foundational
Research funds No. R360FRI03/2101/RO110101.

The development of an Ix(a,b) routine was requested by Dr. K. Abt
of the Mathematical Statistics Branch, Operations Research Division.
The routine is of vital importance as a subroutine in a larger sta-
tistical program (NOVACOM), presently under development. NOVACOM,
which will perform analysis of variance for data classifications with
missing observations, is a program of wide applicability in weapons
effectiveness studies and other statistical problems.

The IBM 7030 code was developed by Mr. Travis Herring from flow
charts contained herein. Auxiliary subroutines for the calculation of
certain elementary functions were taken from the 7030 Systems Library
subroutines.

A NORC code for Ix(a,b) was initially constructed primarily for
exploratory type calculations. The auxiliary subroutines incorporated
in the NORC code were taken from the library of NORC subroutines
developed by Dr. A. V. Hershey of the Science Research Group.

This report contains more recent developments and supersedes
NWL Report 1949 of 28 February 1965.

Date of completion was October 1966.

APPROVED FOR RELEASE:

Is/ RALPH A. NIEMANN, Acting
Technical Director
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I. INTRODUCTION

The incomplete beta function, B,(a,b) is defined as follows:

X

B,(a,b) f ta-1 (i - t)b- at , (i)

0

where

O x :x-1 a>O , b>O .

For x = 1, Bx(a,b) is known as the complete beta function. It can

be expressed in terms of three complete gamma functions, [2; p.127],

B (ab) = r(a) r(b) (2)

r(a + b) '

where the complete gamma function, with argument a, is defined by

00

p) e-t t 1 dt, s >0 (3)

0

Throughout this paper the following constraints are imposed on a
and b:

(1) They can only take positive values of integral multiples
of one-half.

[2) They satisfy the inequalities:

1/2 _E a l 108 y 1/2 _• b ! 60

The second constraint may be relaxed on the upper bound of b, at a
proportional increase in the amount of calculation required.

The purpose of this report is to describe an efficient
method on a digital computer for the high accuracy computation of
the ratio of (1) to (2) subject to the constraints (1) and [2) on

1
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a and b. This ratio is known as the incomplete beta function
ratio and is indicated by the symbolism Ix(ab), i.e.,

Ix(a,b) _- Bx(a,b)/B1(a,b) .(4)

By the substitution of u = 1 - t in (1)

Ix(a,b) I- - Il•x(b,a) .(5)

In probability terms, Ix(a,b) is called the beta distribu-

tion function, with mean kt and variance r2 given by

p, = a/(a + b) , a' = ab/[(a + b + 1)(a + b) 2 ] , [2; p 244]. (6)

The importance of this function is reflected in Karl
Pearson's monumental work, Tables of the Incomplete Beta Function,
[10], which required ten years to complete (1923-1932). The
method he employed will be outlined in Section III. The primary
importance of the beta distribution function, Ix(ab), stems from
the fact that it is directly related or interpreted in terms of
three basic continuous probability distribution functions, the
chi-square distribution, the F (variance ratio) distribution, and
the Student's t distribution. It is also related to the discrete
cumulative binomial distribution.

It will be shown in the subsequent discussion that the
constraint (1) above is not a very severe one, since the import-
ant related distributions, just mentioned, are covered by the
values of a and b allowed under (1).

The remainder of this section is, for the most part, taken
from [1; p 940-9481. Let X1, X2 , ... XV be independent and

identically distributed random variables each following a normal
distribution with mean zero and unit variance. Then, as it is

V

known in statistics, X2 - X2 is said to follow a chi-square
1=l

distribution with V degrees of freedom; the probability of the

event X2 • X2 is given by

x
2

P1X 2 5 , 2} = P(X2 Iv) 2 [2>e r(v/2)]1' e-t/2 t(V/2)-l dt . (7)

A proof of (7) is given in [2; p 2331.

2
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Now, if . and X2 are independent random variables which

follow chi-square distributions with v and v 2 degrees of freedom

respectively, th x[/(X[ + X2) folows a beta distribution where
a ,,/2, b = v2 /2. Thus

pcy2/(x2 + X2) < x) Iz(ab) X()

A proof of (8) is given in [2; p 243].

If we consider the same random variables X2, X 2 then the

distribution of the ratio

F = 1 1

2V2

is said to follow the variance ratio or F distribution with v.
and v2 degrees of freedom. The probability that F < F. is given by
PF _< F_0) P(FIv., v)

V1/2 V2 /2 Fo 0 ( +V )/2
V_ 1 • V2 F,- 2 (,,2 + V,. F "(++ '/ 2 1,d

B.(v 1/2, v2 /2) J

Fo0 Ž0. (10)

A proof of (10) is given in [2; p 241-3]. The substitution
z = v2 /(v 2 + vI F) is applied to (10). It follows directly

from this variable of integration substitution that
P( FoIl'I V2) = 1 - Ix (V,' l) = 'XV1 V2),

where

V2 I- x= V Fo
V2 + V, F, V2 + v, F,

3
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If Xa is a random variable following a normal distribution

with mean zero and unit variance, and X2 is a random variable
following an independent chi-square distribution with v degrees
of freedom, the distribution of the ratio

X/x 2 /v -2 t (12)

is called the Student's t-distribution with v degrees of freedom.
The probability that jtj will be less than a fixed constant, to,
is given by

P(ttl ! to) = A(tov0

to v+I

LBj(+, 1)]-l (1 + t2/V)- 2 dt . (13)
-t 0

A proof of (13) is given in [2; p 237-240]. In terms of the beta
distribution

A(to) = i- x, x - (14)
V + 0o

The derivation is straightforward; apply the transformation

z = v/(v + t 2 ) to (13).

In case a and b are specified as positive integers, the beta
function is related directly to the cumulative binomial distribu-
tion, E(n,r,x), which is given by

n
E(n,r,x) z e(n,i,x) , (15)

i=r

where

e(n,i,x) E (n) xi(l - x)n-; [21], [22.] (16)

4:
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If x is the probability of success in one trial, the cumulative
binomial distribution, E(n,rx), represents the probability that
at least r successes will occur in n independent trials, and
e(n,r,x) the probability that there will occur exactly r successes
in n independent trials. In terms of Ix, we have

E(n,r,x) -- B x(r'n - r + 1) _IX(r,n - r + 1) . (17)
B,(r,n - r + 1)

The derivations of (15) and (16) are given in [2; p 193-194]; (17)
is derived in [21; p XVII]. Applications of E(n,rx) are also given
in [21, p XXXIVI; applications of the continuous distributions
given above can be found in many references, e.g., throughout [5].

The four distributions that have just been related to the
beta distribution require only positive values of a and b at the
integral multiples of one-half. Moreover, even the non-central F
and t distributions are included by these values of a and b,
[1; p 947].

A number of published tables exist for I. or its inverse with
respect to x. Four of the most extensive ones are referenced here
and the ranges of the variables are given.

A table already mentioned is K. Pearson's,[il0]. It is the

most comprehensive for Ix(a,b). The ranges of ab, and x are

a = SO, b = !(150 such that a Ž b, x = 0(.01)1.00. Values of

the beta ratio are printed to seven decimal digits.

For integer values of a and b there are the Tables of the
Cumulative Binomial Probability Distribution, [21], issued by
Harvard University in 1955, and the Tables of the Binomial Prob-
ability Distribution, [221], published by the Bureau of Standards in
1950. The ranges of n,r,x in [211 are:

r = O(1)n, n = 1(1)50(2)100(10)200(20)500(50)1000,

x = 0.01(0.01)0.50, 1/16, 1/12, 1/8, 1/6, 3/16, 5/16, 1/3, 3/8, 5/12,
7/16.

5
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Ix(r,n - r + 1) is given to five decimal digits, where a = r,
b = n - r + 1. The ranges of n,rx in [221 are:

X = 0.01(0.01)0.50, n = 2(1)49, r = 1(1)n

and Ix(rn - r + 1) is given to seven decimal digits.

A table of percentage points of Ix(a,b) has been computed by
C. M. Thompson, [151. In this case, the variable x is tabulated
as a function of Ix,a,b. The ranges are:

Ix = 0.005, .01, .025, .05, O.l, .25, .5; 2a = 1(1)30, 40, 60, 120, co

2b = 1(1)10, 12, 15, 20, 24, 30; 40, 60, 120

The computed value of x is given to five decimal digits.

In [91 a nomogram is given which yields graphical results for
IX(a,b) somewhat beyond the ranges of [101 and [151. The values of
a and b extend to 70 and 60 respectively.

6
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II. DIFFICULTIES IN COMPUTING Ix(a,b)

The importance of Ix(a,b) makes it extremely desirable to have
a digital computer program which is designed for the efficient cal-
culation of Ix(ab) to say eight or more decimal digits for any
values of a and b subject to the constraints on page 1. To the
authors' knowledge, no efficient program exists for such a calcula-
tion. A description of a program which is suitable is given in
Sections IV and V.

The next section includes a discussion of some previously pub-
lished formulas, algorithms and computing programs. In order to
more easily set forth where some of these methods fail to be useful,
the major numerical difficulties in computing Ix are stated:

[a) A straightforward binomial expansion of the integrand
in (1) and a subsequent integration to obtain an alternating series
in powers of x cannot be used for large values of a and b. The
eventual subtraction of consecutive terms of nearly equal absolute
value causes a loss in significant digits which is prohibitive.

(b) Ix(a,b) is a function of three independent variables. It
is unlikely that one procedure or algorithm will suffice, and so it
will be necessary to devise a variety of techniques over the ranges
of a., b, and x which are contemplated.

(c) The extensive range of a, 1 < a < 1 0 8. introduces scaling
2

problems in most procedures because terms of the order of p(a)
occur.

(d) The use of recurrence relations imposes the requirement
of computing starting values, in which case, one is confronted with
the evaluation of quantities such as Ix(a,1/2) for large a. This
computation is not straightforward.

(e) Closely connected to [d) is the fact that one must dodge
any procedure which attempts to sum over a elements, since this
could entail the addition of 108 elements. Such a process would
destroy the efficiency of the program and very likely the accuracy
as well.

7
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III. VARIOUS METHODS FOR O9MPUING IX(a,b), Ixl. b).

A search for finding a suitable set of methods for computing
Ix(a~b) was initiated by carrying out an investigation of the

literature on the subject. In this section some of the more perti-
nent papers, from our point of view, are discussed, ard reasons for
not using a particular program or analysis are pointed out.

It seems fitting to begin with the algorithms used by K.
Pearson in computing his table,, [101. They are founded on the
recurrence relations:

I,(ab) = x Ix(a- l,b) + (1 - x) I,(ab - 1) , (18)

I,(a + 1, 1/2) Ix(a,3/2) - -P(a + 3/2) xa/1-x (19)

I(1/2, b + 1) = Ix(3/2,b) + 21(b + 3/2) V./ (1 - x)b , (20)
A r(b + 1)

which are derived in Appendix A.

The procedure is exempli- Lo
fied graphically. In Figure (1) 2 ( 0

the order of the computation for
the case of integral multiples
of one-half for a and b, where -

a and b extend as far as 7/2, is
shown. The ordered pair of
values (a~b) at a node are those
for which Ix(ab) is computed. 2 ( {3

The circled digits specify the
order in which the consecutive
values of Ix are obtained.

Although this process is ade-
quate for generating a table of b

Ix, it certainly would not be 2 2

efficient if a exceeded 50 by
any significant amount. Diffi- ORDER OF CALCULATION FOR
culties (d) and (e) of the last K. PEARSON'S TABLE
section would be encountered. Figure I

8
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Numerous formulas have been developed and investigated by
H. E. Soper and reported in [12]. His work includes perhaps a
greater variety of relations for Ix than any other published paper

on the subject. The contents include the rates of convergence of
derived series for arbitrary real positive values of a and b.
Polynomial fits and Fourier series expansions are considered. The
general conclusion of Soper appears to be however, that none of
the methods given, other than those used by K. Pearson are ade-
quate for computation, [12; p 49].

A paper by J. Wishart, [20], resolves difficulty [c) for
sufficiently large a and b. For completeness' sake a derivation
of his results is given.

By (1)

x sin /

Bx b) f (1 - t)b-1 dt//U = 2f (COS 0)2b-1 dO , (21)

0

where t : sin2 e. If /t = 2y/(l + y 2 ), then

, +y2 2b- 1( dy
B b) =4 (L)b.1 ( 2 ~ .

0

(22)/ r
4 exp 2N E (y2)2il/(2i 1) dy

L i-1 1 + y 2

where

F1l +/ x N 2b -1, y2=N exp - N In iy2
9+ y2/
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If y = z/(2/R,)nad if the power series in z2 /4N is used for
An[(1 - y 2 )/(1 + y2 )], then (22) becomes

B b) 2 1+ - 2N Z (2i -1 dz2 I/ 1 + (z/2F)7 4= N
0 i (23)

2), rN
2 e-z 2 /2 (1- Z2 + Z

\ 4N 16N2

I Z6 1 0 Z12

•25Z0 4 + +Z1. dz (24)
96N 2560N 18432N6

2),. v1'N

2 e-z2/2 [i - 2 +Z Z6 (2+.
0 4N 16N 32N2

Z a I+1 zo4 z1 d z *(25)

-_+

128N3  2N/ 960N4  18432N4  .

Equation (24) is obtained by expanding the product of exponentials

in (23) in powers of z2 . The approcimation (25) is the result of
truncating the power series in (24) to terms of order 1/N 4 . The

indicated term by term integration of (25) and division by Bx1 , b)

gives

bx(!b) ar)•o 1-- - mN (1 + 3 M4

15 /1 -L1\ ý 105 /1
32N2 \3 2N) 128N3  3 2N

- 63 m.10 (p) + 1155 m1 2 (P)] (26)

64N4  2048N4  J

10



NW-L REPORT NO. 1949

where 6 = 2 A7 X and the incomplete normal moment function,

1 zi e-z2/2 dz/(i - 1) (i - 3) ... 2 or 1

(27)

Regrouping terms, Wishart's final result is obtained,

00(p) 1[ 1 (P)

+1Qp - L- + - 0(P) (28)if N2 N83 N4

where

0 (P) M to0), 01 = (1/4) m(), 2 2 .1875 m(6) - .15625 m(6)

0 (P) = .234375 m6(p) - .2734375 m8 (p) ,

04(W) .41015625 m8 (p) - .984375 mlo(p) + .56396484 m12() ,

and

p =2 /(2b - 1)x/(1 + A - X). (29)

Equation (28) has the very desirable feature of approaching

the correct limiting value for Ix ,b) as b - -. The equation

was not employed though, because it would have required incorpora-
tion into our program of an efficient normal probability integral
subroutine. A fast subroutine for the probability integral gener-
ally requires storage of a set of function values at the expense of
300 to 500 storage locations in the computer. Also, a great deal
more numerical analysis would have been required on (28) to fix
rigorous error bounds and to determine the range over which it could
be used efficiently. It is difficult to decide without the addi-
tional study whether it would be worthwhile to insert the procedure
into our present program, especially since the procedure we employ
for this calculation is quite efficient (see Sections IV and VI) in
its own right.

11
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H. E. Fettis, [3], treats the problem of evaluating

e

sin N 0 cosm 0 do numerically. This integral corresponds to

0

1 B (N + 1 M + I where x = sin2 0. It is emphasized at the
2 x 2 2)

outset that it is believed Fettis was only interested in arbitrary
small positive values of N and M. Nevertheless it was not obvious
at first sight whether his formula would be useful for large N
and M. As it turns out, they are not. The basic formula of the
paper is given by

0 8 iN+ [Nl + 1 (M -l+(N+l) sin2

sinN 0 cos M do i " 2( sin2 (

0

+ (M- 1) (M 3) (N +1) sin 4 0
22 2( N + 5)

(30)

If ~ -1r/2 convergence is poor; in this case Fettis advocates
interchanging N and M with an accompanying change in e such that

o

sinN c Cos M 6 d = sinM 6 cosN 0 do

0 0

- (31)

-f sinm 0 cosN 0 do

0

The first integral on the right in (31) is evaluated in terms of
complete gamma functions, and the second integral is evaluated by
(30) for 0 = (./2) - 0, which is small when 0 - 7/2. Even so, if N
and M are large and 0 ~ /4, it does no good to carry out the
interchange of N and M, and the convergence of (30) in this case
would be slow. Difficulty (a) would be met, since consecutive

12



NWL REPORT NO. 1949

terms of nearly equal magnitude but opposite sign do occur. The
associated loss in accuracy is easily seen for the example:
M = N = 99, 0 = 7r/4. In this case, 11/2(50,50) = 1/2, the

integral on the left side of (30) is equal to 1.98 x 10-l1. The
factor sinN4 l O/(N + 1) in (30) is approximately i0-17, and thus
the second factor on the right hand side of (30) must be of

order 1014 . But, the first term in this second factor is unity,
and the second term is negative and greater than unity in absolute
value. Thus the second factor obviously approaches 10-14 neces-
sarily through the addition of nearly equal consecutive terms with
opposite sign.

For the special case of M = 0)(b = 1/2), Fettis sets M = N
in (30), and uses the fact that

sinN e cos N 0 = 2 -N sinN 20

to derive

sinN 0 dO - [2 sin 5/2 1N 1 i (N - 1) (N + 1) sin 2

f N + 1 2(N + 3)

+(N - 1) (N - 3) (N + 1) sin4 (ý/2) - ...1 , (32)
22 2! (N + 5) I

where S = 20. Equation (32) has the same deficiency for large N
as the previous relation, (s0). The values of J range from zero
to i-/2, and again nothing is gained in this case by using (31) for

onear T7 /2. If M = 0 in (s0), then

sin N ¢ de = sinN+1 E (2i)' sin21 0 * (3s)
J=o 2 2i (i,) 2 (N + 2i + 1)0

The Ith term of this series is of order (p-3/2) for 0 - TT/2, and
again (33) would not lead to an efficient algorithm for such 0,
even though the terms of the series here are all positive.

M. E. Wise, [17], [18], [193, deals with the inverse problem,
primarily, of finding good approximations to x, the percentage
points of I., given Ix, a,b. Towards this objective, he

13
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advances a formula for Ix in [17] which is derived by a contour

integration in the complex plane. It is asymptotic for large a
and b. Wise draws attention to papers by E. C. Molina, [8], and
C. R. Rao, [11], and another of his own, [19), in which similar
results are derived without resorting to the complex plane. Below
we give our own derivation of Wise's result. The equation to be
derived is given by (43).

Let

t =e-u/N 10 t! < , 0 !gx 1 , (34)

where N a (a + b/2 - 1/2). Then substituting (34) into (1) and
(2) and taking their difference gives

y- -N An x

B1(a,b) - B(ab) = 1 expr- (a-_ u] (1 - e-u/N)b-1 e-u/N du
XN L N / j

y

1N e-u (eu/2N e-U/2N)b-1 du

0

Y

1 2 b-i e-u [sinh (u/2N)]b- du (35)
N f

0

The term [sinh (u/2N)]b-1 is expanded in powers of the argument
z = u/2N. From [1; p 75, equation 4.3.71]

oo

An sinh z Fz an z2n zI < T, (36)
z n=1

22n- 1 Bn

where an = , and B2 n is the 2nth Bernoulli number,n(2n) '

[1; p 810]. Hence

sinh(b-) z zb- exp (b - 1) Ea z2n • (37)

14
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It is tedious but not difficult to get the an's for small values
of n. Express each exp[(b - 1) a, z 2 n] in its power series about
z = 0 for n = 1, 2, ... , 1. and subsequently carry out the poly-
nomial multiplications. The first six an are given by

. 1
aI = B2 = 1/6 a 4 = 3 3 1

2 . .3 . .52.7

24- 1 B 4  1 1
_2, =a=1 (38)

2 • 41 180 35 - 52 • 7 11

25 B,
a_ =- i , a34 1

3 6' 34 5 7 37 • 53.72 • 13

Thus

exp[(b - l)an z2n] E [(b - 1) an] zni; n 1, 2, ... ,

i=o

(39)

The product over n is taken to give

expn b - 1) z2 + (b - 1) (Sb - 7) Z4

n=a 2 (b 28 .32.5

+ (b 1) .35b2 112b + 93]z6 + .
3s 24. 3 •5 -7J

(40)

i5
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The substitution of (40) into (35) and the subsequent term by term
integration of (35), with respect to u, gives

B1 (a,b) - B,(a,b) _ [r(b) + • r (b + 2)

+ (b - i) (5b - 7) r (b + 4)
2 7 32 . 5 • N4 Y

+ - i) (35b 2 - l12b + 93) r (b + 6) + ...]
2 ° ' 34 - 5 •7 • N'

(41)

where

e u-(b) e- b- du , b > 0, (42)

0

is known as the incomplete gamma function, [I; p 2601 . The final
result follows by dividing both sides of (42) by (2); thus for

3=3

Ix(a,b) - r_(a + b) "y(b) - b) y
Nb I(a) Ir(b) 2 • 3N 2 r(b + 2)

+ (b - I) (Sb - 7) ry(b + 4)

2v 7 5 . 32 N4  r(b + 4)

+ (b - 1) (3Sb 2 - 112b + 93) ry(b + 6)1 (43)
(210 • 34 .5 7) N6  r(b + 6)

The ratio Y(b + 2i)/f(b + 2i) is computed by the recurrence
relation

r (b + 2)/r(b + 2) = [r (b)/r(b)]

- e-y (1 + b + y) yb/[b(b + 1) p(b)] • (44)

16
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This relation is derived by performing two integrations by parts on
r (b + 2), as defined by (42), dividing the result by p(b + 2) and
by using the gamma function equation

b r(b) = r(b + l) . (45)

The series given by (43) is quite attractive from an
asymptotic standpoint. Its rate of convergence from some numerical
examples appears to be rapid for large a and b.

This series also was not incorporated into our program for a
number of reasons. First, an efficient incomplete gamma function
subroutine is needed. Such a subroutine does not seem to exist
for the fast computing we require. Second, the storage require-
ments for such a routine might not be small. Finally, the compu-
tation time for (43) could be slowed down significantly if three or
more terms are required, because of the cumbersome nature of the
coefficients. Although it cannot be said with certainty, since the
study of this phase was very limited, it appears that if (43) would
be more efficient than the method we employ (see Sections IV and V),
the difference would not be impressive as far as computing time.
Certainly, (43) deserves further study.

In a paper by I. C. Tang, [14], a scheme is given for comput-
ing Bx(ab). The basic equation in his paper is similar to (48), (50)
of this report. He has developed a series expansion with all posi-
tive terms in place of the usual alternating series for Bx. The

derivation is elegant, however the relation itself was known to
Soper, [12). Two basic problems with which one is concerned, for
large a and b, in the application of Tang's relations, i.e., diffi-
culty [c), the scaling problem, and difficulty (d), the computation
of starting values, are not discussed in [14).

This section is closed by a few comments on two digital com-
puter programs published in the algorithm section of the Communi-
cations of the ACM.

17
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W. Gautschi, [4], describes a program in which the scaling
difficulty and the starting value problem are resolved. The basic
relations are given by

Ix(a + n + l,b) [il + (n + a + b - 1) x/(n + a)] Ij(a + n,b)

- [(n + a + b - 1) x/(n + a)] Ix(a + n -l,b)

(46)

Ix(a,b + n + 1) =[i + (n + a + b - 1) (1 - x)/(n + b)] Ix(a,b+n)

- [(n + a + b - 1) (1 - x)/(n + b)] Ix(ab + n-1).

(47)

Nevertheless, his program would not be suitable for our purpose
when a and b are large, because of difficulty (e). For example if
a > 60 say 103 or 104 and b is approximately 60, it would require
the computation and summing of 60 plus 103 or 104 terms of (46)
or (47).

The other computer algorithm was designed by 0. G. Ludwig,
[7]. It was programmed at IlWL for the IBM 7030 (STRETCH) by
Mr. Robert Belsky in the interim period of development of the
method described in Section IV. Ludwig's procedure worked quite
well. In his procedure, four sums are generated in every case,
whereas in the present method no more than four occur, and in
some instances only one summation is required, e.g., when b is an
integer. Moreover if x > 1/2 and a is large Ludwig's method
requires summing over approximately the integer part of a elements.
This leads to inefficiency for large a as mentioned previously.

The method for computing I,, as described in the next sec-
tion, was developed by the authors. Although it includes some
relations in common with those mentioned in some of the preceding
papers, it is basically a complete method in its own right, since
it dispenses with all the difficulties given on page 7 satis-
factorily, whereas none of the methods described in this section
have this overall feature.

18



NWL REPORT NO. 1949

IV. AN EFFICIENT METHOD FOR COMPUTING Ix(a,b)

This section contains the main results of this report. The
analysis that was developed for computing Ix is separated into
3 cases as follows:

A - a or b is a positive integer no greater than 60;

B - Neither a nor b is an integer, and a : 60;

C - b is not an integer and a > 60.

The primary ideas or motives behind the method are:

(1) that a and b can be represented by k or k-1/2 and j or
j-l/2,respectively where j and k are positive integers such that
1 : j • 60, 1 : k < 108;

(2) that all sums will be finite so no truncation error
occurs, with two exceptions; in these cases the truncation error is
rigorously and sharply bounded (See discussion on (81) and the
evaluation of An r(s) under Section V);

(3) that no procedure be used which requires summation over
k(a = k or k - 1/2), unless a : 60;

(4) that no alternating power series are evaluated.

It will be assumed throughout that I,(a,b) is to be computed
to an accuracy of [[log 0o l/c]] decimal digits, where c is assigned
and

[[s]] greatest integer in s.

Case A: b = J, and/or a = k < 60 (See Flow Charts Os®)
If b = j, Ix can be computed from

Ix(a,b) a, (43)
19=

19
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where

ai x a F(a + i- 1) (1 - x)i-, (49a)r'(a) r(i)

a, xa = IIx(a,1) . (49%)

If a k • 60, Ix may be computed by using (5), i.e.,

k
Ix(a,b) = 1 - Tx(a,b) 1 1 - E bi, (50)

i =1

where

bi (- X)b r(b + i- (51)

r(b) r(i) x()

and

Tx(a,b) = Il_,(b,a) . (52)

The choice between (48) and (50) is made accordingly:

if a • k (a not an integer), b = j, then use (48);

if a k • 60, b # j (b not an integer), then use (50);

if a k • 60, b = j, then use (48) if j < k and use
(50) if j > k.

The derivation of (48) is given in Appendix A. Equations (50),
(51) follow directly from (5) and (48).

The remainder of the analysis on Case A will be with respect
to (48) since the results for (50) are analogous by the substitu-
tions implied by (5).

A complication arises from (49a) because of the gamma func-
tions. Although each ai must remain less than 1 - c (otherwise,
since all ai > o, Ix >- I - c) the individual quantities r(a + i - 1)
and r(a), and even their ratio P(a + i - 1)/r(a), can exceed the
value of the largest single precision number the computer can
operate on. The same problem is manifest in the bi and ci coef-
ficients given by(51) and (62), respectively. This difficulty with
the ai(and bi) is resolved by the following scaling procedure:

20
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Let

a -max a

then

min {[[(a - i)(1- x)/x]] + 1, 4 k 13

1 k =k .

The result given by (53) is easily deduced since, by the defini-
tion of an, it is required that

an_ -I an , 2 n n - j , (54a)

an+1 -an , 1< n • j - 1. (54b)

Inequalities (54) imply

n - [(a - i)(i - x)/xl + 1 , (55a)

n - [(a - 1)(1 - x)/x] , (55b)

from which (53) follows. Tnequalities (55) also imply that
there are at most two an and if so they are consecutive.

Having found an expression for anthe In an can be computed
by

In an = a In x + (n - 1) in(l - x)
(56)

+ In r(a +n- 1) - In r(a) - rn F(n)

Various sensings are made on In an from which it may be usually
concluded if Ix • E or Ix > 1 - E. Thus all the ai are under
control, at this stage, since none is larger than an = exp [in an]

which must remain less than 1 - e as explained above. The pro-
cedure is brought forth in detail in Flow Chart 6,
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The ai(i . n) are computed by the following extremely simple
and efficient recurrence relations:

a (i+ + a - )i-x) a±, n !-< i -<j - 1 (57

a ( i ) (11 x) aji ,il<i n-l, (58)ai i + a X) i+

which are easily derived from (49a).

The computation of (56) requires a method for evaluating
An F(s) directly, where s is used to represent the argument of any
natural logarithm that appears in this report. The method by which
this is accomplished is described in Section V, and by flow charts

( and®.

Case A is concluded by noting the following advantages:

(1) All terms of the sums in (48) and (50) are of like sign.

(2) The series to be sunned are finite series with the number
of terms to be summed not exceeding 60. Thus no truncation crror
need occur (actually one is introduced by a sensing in the program
which permits truncation of the series if any of the a, or b,
become less than specified tolerances. See Flow Chart®G).).

(3) The magnitudes of the a. are kept under control for

any k such that 1/2 • a < 10'.

(4) The procedure is efficient.

Case B: a ! 60, a = k - 1/2, b = j - 1/2. See Flow Charts C,
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In this case Ix(a,b) is computed from

Jil
Ix(a,b) = Ix(a,1/2) + ý/ -- x 7 xa r~a + i - 1/2) x)i-l

i~j r(a) r(i + l/2)T (59)

ix(a,1/2) Ix i.9 X/ E -W X'-- (60a)Ix~a(22 2 , F,•= (i T 1/2) r(1/2)

J-i
ixT', b) +Xl ! ,,'/1 f--x z ~ ) -

2 2 2 F(i + 1/2) r(1/21

(6Ob)

i X( ) 2 1 tan-' ( _ _ (61)

such that the arc tangent is between 0 and TT/2. The derivations
of (59), (60) are given in Appendix A.

We introduce the notation

c, xa r(a + i- - 12)T - x)i•1/2 (62)
r(a) r(i + /2)

r I + i)i-
d (i + 1/2) r(1/2) x , (63)

such that (59) becomes

(/-k_1 j-1

Ix(a,b) - tan-- Y- , 7 ,/, z di + Z ci (64)

23



NWL REPORT NO. 1949

The terms di are generated by the simple recurrence relation

di+1 = x F 2 1 ]di 1 l- i ! k - 2, (65)L2i + 11

where

d 2
d• rr

No scaling problem occurs with the di terms.

The ci terms require scaling; it is done in the same way

that the ai were scaled.

Let

en max ci
i

then

n =min [[(a- 1)(l - x)/x +211 - (66)

where the result is derived from

c n+1 n + a - 1/2 (67)(:T n + 1/2 ( )•i,(v

eAn n n+ a - 3/2
_ = - / (1-X) (68)cn-1 n- 1/2

the double square bracket notation was defined on page 19. It is
known that c. is less than 1 - Ix(a,1/2) as otherwise Ix(ayb) is
equal to one. From this point, the scaling proceeds exactly as
for the an. The recurrence relations for the ci are:

- i + a - 1 2 (1 - x) c n 9 i < j - 2 , (69)Si +1/2i+1

i +a - 1/2 xc 1 < i < n .I_ (70)
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The c. are also summed in the same order that the a1 were, i.e., the

ci with i > n are computed and summed in increasing order of i. Then

the remaining ci are computed and summed in decreasing order beginning

at i = n - 1. Refinements in the program which are not included here
may be gleaned from Flow Charts U and 0. The favorable factors
listed for Case A on page 22 also apply for Case B, with the excep-
tion that two rather than only one sum, with as many as sixty terms,
may have to be evaluated.

Case C: a > 60, b = j - 1/2. See Flow Charts 0' 0, ©.

Case C is by far the most difficult of the three cases to evalu-
ate Ix(a,b). The beta ratio is again given by (59), however (60)

canhot be used for the computation of Ix(a,l/2) because the summa-

tion in (60a) runs over k, where this integer can be much larger than
60. Thus the problem here reduces to finding an efficient procedure
for evaluating Ix(a,l/2) when a is large. After considering some of

the methods proposed in the literature, [s], [12], [18], (20], it was
decided to proceed by an entirely different approach, that of using
Gaussian quadrature, [6; p 319]. This technique was chosen because
the truncation error E (-< E') could be sharply and rigorously bounded,
and moreover the error bound indicated that a surprisingly low order
Gaussian formula would suffice for the accuracy desired. The details
of the critical steps in the proofs required for the bound E' of the
Gaussian error term are relegated to Appendix B, otherwise the
analysis needed follows. We begin with some preliminaries.

Apply the transformation t = 1 - u2 to Bx(a,l/2), so that

1

B(a,/ = 2f (1 - u2 )a-i du (71)

The following notation is introduced:

M Bl(a,l/2) = F(a) F(1/2) - f (a -• o , (72)F(a + 1/2)

Ix(a,l/2;X) 2 (1 _ U2)a 1 du (73)
M
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One can then write

I (a,1/2) = IX(a,l/2;X) + I_2(a,l/2;i), (74)

with the objective of making the last term in (74) small, i.e., for

a given c" > 0 to find a X such that

li_,2(a,!/2;l) - E . (75)

A function X(E") which satisfies (75) is given by (80). The derivation

'follows. From (73) 1

I 2(a,1/2;1) =2 e(a-1) en(1-u 2 ) du

1

2 expL(a-l) (- u2 " /iu2  du (76)

1

2ex4(a- 1) ( -X2 e)(a-1) 2

M- I) (a e dz

-e -z dz] (77)
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where z = 7--1 u. But the last integral in (77) is negligible for
a Ž 60, since

e 2 u du (See [i], p. 298).

Hence

0o

S- ex(a - 1) I 7 2 dzm 2 ýT a---

<- - exp (a 2)kae (7-)

MvT

M ,a 1

M Ja-1

By solving (78) for X one obtains that

1 1/2

X jJ LC (79)

Inequality (79) is relatively sharp; it can be slightly improved provided
one is willing to solve a transcendental equation for ?, and accept the
corresponding increase in computing time which would result.
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The smallest value of X is chosen from (79) for X(e") so that

I 1/ 212
a --,)a 1 n e" (a - 0) (80)

If a is large X(c") X should be determined from its asymptotic

form as given in (80). One can now deduce from (78) and (80) that

the upper limit (unity) of the integral in (71) can be replaced by

the smaller quantity X(C") = X. If X is less than /T -- x , then the

value of Ix(a, 1/2) is less than C"; a fact that is easily concluded

from (73) and (74).

Having dispensed with these introductory results, the basic

objective here of deriving a truncation error bound for the

Gaussian integration procedure is now carried out.

The exact error term as a result of using Gaussian quadra-

ture of order m, O(m), [16; p 324], to numerically compute the

integral of a function f(t), with a sufficient number of deriva-

tives, over [- 1, 1] is given by

E (m')4  f(2m)(tJ) 1- < t 1 < I (81)

(2m + 1) [(2m)1] 3

where f(2m)(t) means the 2mth derivative of f(t) with respect to

t. The integral of (73) is transformed so that the limits of

integration become - 1 and 1. The usual transformation

u 2 X-Z-x t + (), + 2¢-• (82)
2 2

applied to (73) gives

y1

iX(a,1/2;X) ý X /_ -_x F(u)dt * 
(83)

M -2
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Similarly by applying the transformation

u = (/i----x/2) (1 +t (84)

to Tx(al/2), defined in (52), the result is

Tx(a,l/2) =•M" x f F(u)dt , (85)
-a

where F(u) represents the integrand in (73). It is important to

consider Ix here as well as Ix• The total interval of integration

as specified in (73) is (x - 1- x), however if we apply (83) only

when x/2 < 1 -- x (and (85) only when X/2 -> /1- x),then essentially

the total integration interval is never larger than x/2 or half the

maximum value of (? - 1 - x). This leads to a decrease in E' by a

factor of 2 +(2m+l), since the integration interval appears in

f(2m)(t) explicitly to the (2-m+l) power (see Equation 87). The term

X/2 is obviously never larger than 1/2 and generally will be quite

small. For example, if a = 104, E" = 9 x 101 then x/2 = .024

from (80).

The 2mtth derivative of f with respect to t is needed. The
integrand from (83) and (85) is given by

x(x- )-x) F - - xt + X_+ X < l-xM 2 2 Ji

(86a)
f(t) =

/1J- -- x F 1/1 -- xt + -x_ > _x

M 2 2' 2 2

(86b)
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Therefore, indicating the 2m th derivative with respect to u of
F(u) by F (2 m) , f (2ml (t 1 ) in (81) is given by

-- %+1
7 2F<2m+ T

f(2M)(ti) = (/ ')2M+I1(2M) (ul) (87a)

(87b)

where u = u, corresponds to t = t 2 ,and it is understood t, (and

also ul) is different in (87a) from (87b). The effect of

reducing the integration interval is evident in (87). It is
observed that the second factors on the right hand side of (8-)

are bounded by (X/ 4 )2m+l. The principal result we wish to derive
is the following expression for E'

EP ýý ' .r__(k X2 )2M+l I(M'0 (a ) <E

1 (2m + 1) .(2)]2" r(a - m

subject to the constraint that ý - 1 > 2m + 1/2. Since a > 60

here and m will turn out to be in the neighborhood of ten, the
constraint is insignificant for our application.

Let

U - , (1 _ UU21 , (0u)
du'

so that

Ua-i 2m = F(m U (90)

It is shown in Appendix B that

[r/2]1
r= 2 (- l)r-i 2 r-22i r'r(n + ) ur-21  - U2)n-r+i

i=0 i.(r - 2i).' r(n - r + 1)
(91)
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and also that Unr satisfies the following ordinary differential
equation

(1 _ u2 ) Unr + 2(n - r -1)u U' + (r + 1)(2n - r) Unr =0n~~r n,r r

(92)

for positive integers r and real numbers n > r.

The key idea which leads to a useful bound on Un,r is that
the absolute values of the extrema of Un, r form a decreasing
finite sequence on [0,11 for n > r + 1/2. Two closely related
proofs of this statement are given in Appendix B. It is the

'crucial step in the sequence of steps employed for bounding E.
Thus assuming the statement true, it follows

lu, (u)g lun, (O)l , r even. (93)

For n = a - 1, r = 2m, one obtains from (91)

iju_. (0)1 = (2m) 'r(a) (94)
-1,2m mUr(a - m)

and the desired result given by (88) follows.

The graphs on pages 36, 37 contain curves of (-log 0o E')
versus a based on (80) and (88), for given values of
C" and m. Their purpose is to indicate the smallest order of
Gaussian integration, 0(m),which can be used for a given E',
where c' represents the upper bound on E'. The results as
graphically set forth clearly substantiate the remark made
earlier that very low order Gaussian integration formulas will
suffice for the evaluation of Ix(a, 1/2) for large a. For
example, in the computing program, as it is now operating m = 10
is used with c" = 9 x 10-11, C' = 4.5 x 10-11, and it is
apparent from the graphs that this value of m is adequate for
all a c [60,10s].
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The procedure by which the curves were constructed for a
given c" was as follows:

(o) a sequence of positive integers was chosen to represent
various 0(m),

(x) x(c") was then computed by (80) for a sequence of values

a E [60,104o], and a given value of c,

(Y) these computed values of X with their corresponding a values
were then used in (88) to compute loglo E'.

Thus the O(m) to be used for a given e' can usually be estimated
conservatively from the graphs. A precise O(m) can always be deter-
mined by computing a set of X from (80) and the associated E' from
(88) for various m and a. One observes that generally log,, E' is a

very slowly increasing fuction of a.

This section is concluded with the explicit formulas used for
the Gaussian quadrature of Ix(a,l/2). They are:

ix~a,/2) - _-) fýa+, 1/2).
Tx(al/2) (~x a) r(1/2)

m + Yi jaa

X) + 1T _ X]2+)
i=2

2 <4(1 X) (95)

ý(a,1/2) xr- r(a + 1/2)

m (a) r1(/2)

wi X

X2 Ž4(1 ( x) , (96)
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where the y1 and wi are the Gaussian abscissae and weights,
respectively, of order m, O(m), [1; p 9161. Since the last term in
(74) is always non-negative and no larger than c' for X which
satisfies (80), it follows that

Ix(a,1/2) - [Ix(al/2;X) + c"/21] E-//2 (97)

since
Ix(a,1/2) >ý- Ix(a,I/2;X) •(98)

This accounts for the additional e"/2 in (95).

The wi and (1 + y.)/2 are tabulated below for 0(10) to 14
significant digits on [-1, 11, where y1 are the Gaussian abscissae
and wi the Gaussian weights.

(1 + yi)/2

0.0130 4673 5791 414 0.0666 7134 4308 688

0.0674 6831 6655 507 0.1494 5134 9150 58

0.1602 9521 5850 49 0.2190 8636 2515 98

0.2833 0230 2935 38 0.2692 6671 9310 00

0.4255 6283 0509 18 0.2955 2422 4714 75

0.5744 3716 9490 81 0.2955 2422 4714 75

0.7166 9769 7064 62 0.2692 6671 9310 00

0.8397 0478 4149 51 0.2190 8636 2515 98

0.9325 3168 3344 49 0.1494 5134 9150 58

0.9869 5326 4208 59 0.0666 7134 4308 688

The Flow Chart (7> covers this part of the program.
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The use of (59), with Ix(a,1/2) precomputed, as above, gives
Ix(a,b).

The quantities E, E', and E" which appeaxed in this section
are briefly sumarized. The number E is specified slightly less

than 5 x 10- P+1) where p is the number of decimal digits to which
Ix(ab) is to be computed. The number C' is specified and is used
for bounding the truncation error due to Gaussian quadrature which
is used to evaluate Ix(a,1/2) when a Ž 60. The graphs on pages
36-37 are a guide to determine the O(m) for given c', c'.
Generally E' is taken equal to c/4. The number /' is taken equal
to 2(C - e')/3. This number is used in (59) to bound the c . The
details are shown in Flow Chart ®. The quantity C/ is also used
in (80) to reduce the Gaussian interval of integration from

[I/- x, lI to [ill- x, x]I.

The C-quantities are used primarily to insure that
Ix(ab) is computed within C when (59) is used. Thus if

E/4 and e" = 2(c - E')/3 = c/2, the following analysis
shows that the required accuracy is attained.

IX(a,b) = I (a,i/2;X) + 11_.2(a, l/2;l) + /Ti--x S (99)

where S denotes the summation of j-1 terms in (59); and a similar
relation holds between the computed quantities, distinguished by
asterisks from the corresponding true values in (99). Then, taking
differences and using the triangle inequality,

II(a,b) - I*(a,b)l I iIx(a,l/2;X) - I*(a,I/2;X)i

+ li,_X2(a,l/2;l) - jtx2(a,l/2;l)I +/1 -- x IS - S*I

(100)

where the value given to I~..x2(al/2;l) is explained below.
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But the first term on the right in (100) does not exceed El,
or c/4, through the choice of the proper order of Gaussian
integration. Now 0 f Il_)a(a,l/2;l) --< c", by (78). Hence,

reasoning as in (97) and (98), we arbitrarily take I*_x2(a,1/2;l)

as E"2 = E/4, and this guarantees that JIl 1 )2(a,1/2;l)

- l* 2aThe last term in (100) does not exceed

or E/2, as shown by the method of determining the number of terms
computed in the summation (see Flow Charts and @). Thus
II (ab) - I*(a,b)1 5 E/4 + e/4 + e/2 = c, as was to be shown.

The program is presently set for obtaining Ix(a~b) to within

two units in the tenth decimal digit for a < 108. The E-quantities
are specified by

e = 1.8 X 10-10, E= 4.5 X 10- 11, E:# = 9.0 X 10-.
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V. COMPUTATION OF In F(s), K -- In p(a + c) - In p(a)

The cases A, B, C which have been described above require the

computation of In F(s) or K to high accuracy, where s represents a
positive integral multiple of one-half and c takes the values n - 1
or 1/2. This is dealt with in an efficient manner, at the expense
of two hundred storage locations, by storing the value of In F(s)
for s = 1/2(1/2)100 to the full accuracy of a single precision num-
ber (which is fourteen significant digits on STRETCH) and by using
asymptotic series for In F(s) or K when s > 100.

In such cases, it would seem convenient to always use the
asymptotic series, for In F(s), [i; p 2571, which is given by

In F(s) a- (s - 1/2) In(s - 1) - (s - 1) + (1/2) In 2v

1 1 1 1 1 1(1)
+ 12 s- 1 360 (s- ) 3  1260 (s-l) 5  .... o

where the sum of the first five terms is sufficient for thirteen decimal
digit accuracy with s > 100. It is observed however that in every case
where In F(s) is needed actually the difference K appears. The use of
(101) to compute the two logarithmic terms of K separately leads to a
prohibitive loss of significant digits if a is very large. This may
be seen by observing that the dominant term in (101) for s = a + c or
a is of the order of a In a. Thus, upon subtraction, the undesirable
loss of digits occurs, e.g., if a = 104 and c = 1/2 four digits are
lost. If a = l0s, c = 1/2 then In F(108 + 1/2) - In F(108 )
= 1.742068075.3142 - 1742068066.1038 = 9.2104, so that in this case nine
digits are lost.

This difficulty is resolved by introducing the following asymptotic
series for K, if a > 100,

l c [ n(l+c as 11
In F(a + c) - In F(a) a-- c - c a .. / - 1

2 a Lc/a

1 c + c In(a + c) - [1
2 a 12 a a+c]

+~~~ [ l -+60 [a (a + c)3 1260 a (a + c) 5 ] +

(102)
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The series can be derived by the use of the standard Stirling approxi-
mation to In F(s). The first expression in square brackets on the
right hand side of (102) is evaluated by the series

In(l + 0)- Y + 22 + L + Z! + y! + (103)
0 2 +0 L3 5 ~7 +9+ .(1)

where 0 =- c/a, and y 9 0/(2 + 0). The series in (103) is easily and
efficiently generated by the recurrence relation

(2P + i1 y 2 AP 1 , p = 1, 2, Y • . , (104)

where

/ (2p + 3) A,, 1/3 (105)

Either five or ten terms of this series is used to attain fourteen
digit accuracy such that if

1. 0 < 0 • 0.15 five terms are usedj

2. 0.15 < 0 < 0.6 ten terms are used.

It is also necessary to retain the series given by (101) for those
cases when the value of In p(a + c) is not stored and yet a < 100, e.g.,
if a + c = 140 and a = 90. In such cases no significant loss of
digits will occur in computing the two logarithmic terms of K
separately.

Thus if a + c • 100, K is obtained by table look-up. If
a + c > 100 but a < 100 then An r(a + c) is computed from (101) and
An r(a) by table look-up. If a > 100 then K is computed from (102)
and (103). The details are given in flow charts C,, ®7
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VI. COMPUTING PROGRAM FOR Ix(a,b) - FLOW CHARTS

The numerical calculation of I,(a,b) for

1< a 10 8  1 < b 60
2 2

a = k, or a =k 2 b = J, or b =j ,
22

where j and k are positive integers, is based on equations (48),
(50), (64), (80), (95), (96), (97), (101), (102), (103) of the
last two sections. The program, as outlined on the Flow
Charts Q - Q, has been coded, as a subroutine, for the NORC and
the IBM 7030 (STRETCH) in absolute machine language. Mr. Travis
Herring prepared the STRETCH coding.

The inputs to the program are a, b, x, c, c'. The E-quanti-
ties are discussed on pages 34-35 of the last section. If the number
of decimal digits required in I,(a,b) is other than 2 units in the
tenth decimal place, then this could necessitate a change in the
number of Gaussian multipliers required as a result of a change
in c' and c".

Two constants appear in the flow charts which depend on E.
They are identified by the letters f and g and are defined by

f = In c" = In 2(c - 0/3

(106)
g =Inc C

Generally, the notation used in the flow charts allots lower
case letters to numerical values and identifies the machine location
in which that value is stored by the corresponding upper case letter;
thus the storage location for the number a would be Z.

There are a total of seven flow charts starting with the
master flow chart in which the over-all computing procedure is
outlined.

The average computing time on STRETCH is 2.6 x 10-3 seconds
per case. This would mean that an average computing time per case
on an IBM 7090 would be about 8 milliseconds. The average time on
STRETCH was determined by running large sets of cases for random
choices of x values. Also very many cases were run by taking equal
increments in the variables a, b, x and essentially spanning the
space generated by these variables.
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It is easily observed from Flow Charts ( and that if
values of b higher than sixty are desired then the number of terms
to be summed in such equations as (48) and (64) are correspondingly
increased. If b were made excessively large the procedure given
here would be inefficient.

For easy reference, the basic formulas used in the program
are given again here with the same equation number they carried
previously.

I,(a,b) = 1 - I 1 _,(b,a) = 1 - 7,(a,b) , (5)

J , (a -, i - I) ( - x i-
Ix(a,b) = Z xa (1 - x) , b j (48)

J=1 1(a) P(i)

1 /xT(a + i - 1/2) (1 -
I,(ab) =Ix(al/2) + 7 xa (a) 1(i + 1/2)

S=1

a =k-g

b -j-J- (

k-1

I,(a,1/2) Ix(1/2, 1/2) - v1x V7 -/ x Z £(i) x 1 -

i=. r1(i + 1/2) F(1/2)

b = 1/2, a = k - 1/2 < 60 (60a)

Ix(1/2,b) I x-(1/2, 1/2) +i 1 - x Z i (l-x)i
i F(i + 1/2) r(1/2)

a 1,b j-I. (60b)
2 2

41



IWL REPORT NO. 1949

2x 2 =• ,

F( (m aL1/2 1/2
= H )aK~j -4L~~-T--n El'] (a (80)

I(a,•1/2) a-(X - V-1 - x) r(a + 1/2)
r(a) r(1/2)

W, - X( - /i - ) + 2y, + X j 1  + "'

2 =+

x2 <4 (1-x•).

(95)
Tx(a,/2) _• •/j--- x ( + 1/2)

r(a) r(1/2)

m[ + Iý) 2 a-1

-* Z 1- x , x 4(- x)

(96)

In F(s) l (s - 1/2) In(s - 1) - (s - l) + (1/2) In 2Tr

+ - 1 + 1 (101)

12 s - 1 360 (s -1) 1260 (s -1) 5

In r(a + c) - In r(a) ac- 2c n( +a c/a - i

c + c n(a +c) - 1F 12
2 a 12 La a + c]12

360 -a (a + c) 1260 a (a + c) 5 +
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2n(y + 0) - 1 - y + 2+ 4 + + 5 7 9 _ + (1o3)

IA 2 = y 2 Ap - , pO =1, 2,... (104)

where

2 P= y•/(2p + 3) , A, 1/3. (105)
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MASTER FLOW CHART Tx(a, b)

Ix(o, b) = I - I I-x(b,a) -- I - x(o, b)

k AND j: POSITIVE INTEGERS

1 b/2 < b < 60 1/2 < a < 108 0 < x < I
INPUT: a, b, X

E' L b =j OR j-I/2 a k OR k-I/2

OUTPUT: Ix(a, b) 0 < Tx(a, b)<I

PERTINENT EQUATIONS ARE GIVEN ON PAGES 41 - 43

4 START

0n yes[

ISa <-60 ?

Ibai- 1/2 a > 60 ys n
IEOS. (95) OR (96)I b j--I/2c•u a-° 15,0 o<:"PUE ISaISa<bP

a=k -1/2 ao a b X& a-X ICOMPUTE:
EQ. (6 1) [ Tx(a, b)
COMPUTE;

T ~i2,1/2) Ib=j, a =k, a<bI
/ l~EO, (48),(50)
i J~COMPUTE;"

I s ~l? I x I I-!,I
i no yesI

JEO.(60OA) J IS j=l ?
COMPUTE 1/) n yes[

xla I NTER•-•'-CHA--'-GE

is ~ ~ J j= ? b X• 8-xI

yes n-oi I
ye b =j -- 1/2
b- - 1/2 a (=1/2I
N k 1/2 EO (60 A)

E0.(59) COMPUTE :_
COMPUTE: Tx=l-IXIT-x(o, b)

S EXIT

4-4-



(13ý
COMPUTATION OF EOUATION (48) START

Ix (o, b) X 0j rq+a-n(I-x)i-i IS O=I/ ?
i=I rmr(a) yes no

SET 0 - I ET n=LARGEST
11- N POSITIvE INTEGER

-1)(I-X)
(0 x +1

IS n ?
no Tyes

SET n-I - I SET I N
j _ I __,ý

MPUTE InOn WHERE

Xa r(n +a-I ( IX)n-I
On r (n) r (a)

IS0CIS In o :S g In j ?
nono yes

COMPUTE: STORE

A 

eln On -
I

IS a > I- c?
no yes

STORE I
A

[E XIT OUTP
IN 2:1

IS X 15 c/j ? is i j ? j

S T i=n-I COMPUTE: cri:!no pyes yes nolA + a (I-X)

COMPUTE:

Is i = 0
0no tyes 

10'2 + X i - 221

COMPUTE: 'T cr
Piz i 3iý 9 M logc InE

EXIT-OUTPUT
IIN ZI

COMPUTE:
PiX A

(r2+,\ 22

11S X!ý ?
no 

yes 1
45



t;,N

START COMPUTATION OF EGUATION (59)

1 zx(a, b) =I X(a, 1/2)+iil )(0 v-l-x r(i+ a -1/2) (I-X)

F-T n=LARGEST POSITIVE i=l r(i + v2ma)

INTEGER + 1/2
x

is n ?i
yes

ffT !-I- N IS n < 2 9

I yN l,.SWn < 2?
j-2 yes no

SET 0 - I SET n-l- Z
I - N

COMPUTE: In Cr, WHERE

Cn X G,/rI -- X -

r(n+a-i/2)(I-X)n-I

An + 1/2) r (a)

IS In Cn :5 *f In -E"
f-In i ?

yes no

E 0- Z, COMPUTESTOR 
LInCn_

I,(a, 1/2)+ 1
(rl 21 IS IX (0, ý/2-)

Cn> __e ?
yes n T

STORE I 1 0 Z2
Cn A

JEXIT OUTPUT
[IN 11 1 +1 1:

IS > J-1.

SET i= -Z COMPUTE ai=
(Or' I i + a - 1/2 0-X

i+1/2

Z I
OMPUTE

IS i 0 ?
yes no

012 + cI I COMPUTE Oi= j?-2 + -T2

i+1/2 (T I x its x .5 e /j-,

i k--f yes

IVM?'U I L
9 \- A

0-2 +

IS X <

-- ;Y'Z',;O
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COMPUTATION OF EQUATION 60A

k-I _ _i) xi-I 2 t L' L-X
I x (a, 1/2) Tx(1/2, 1/2) - V'V -v1-X • i+ x -I/21/2) -

.,r'(i-li/2)r(i/2) Ii(2 taN O

1 START I

0 1 1

IS I>- k-I

yes no

I + - ] + i 2i

vXv -X 2i+1

x (1/2, 1/2) 21 d -
- (2/Tr)o_.•

d + a- - X

EXIT TO EO.59
IF a * 1/2 AND
b * 1/2

®
COMPUTATION OF EQUATIONS (95), (96)

STARTI
SOLVE FOR X BY EQ.
(SO) 

_ -

=1is <5 I -X ?
Iyes no

STORE 0 FOR IS < 4(1-X)?
Ix (a,/2 yes nol

COMPUTE Ix(a,I/2) COMPUTE f (a,1/2)
BY EQ. (95) [BY EQ. (96)"1

COMPUTE I (a, i/2)=

rI-.a, 1/27

IEXIT" TO EO. 59
lIF b /2 I

4-7



©COMPUTATION OF K S nr(a+c)-Inr(o)
START EQUATION 102

ARE a, c HALF
INTEGERS
SUCH THAT:
100 < a< 1,I8

1/2 5 c :5 60 ?
yes Ino

c/o 0 GO TO FLOW
CHART ® AND
COMPUTE lnr(a+c)

F9 __AND inr~o)
_ Y SEPARATELY TO

2+0 DETERMINE K

e .5 0.15 ?
yes no

4 D 9 D

-Y K
-3(2+8)
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COMPUTATION OF [ioeur(s)], EQUATION 101

I START I

*I is s > 100
.In°o yes1

I COMPUTE: L2s AS-ION U

O(nR e/2) 1 0 ogen-n

+ //2 loge 2o10" X08 4

I /n2 - -- N* I
I

I Nnn*/12 "--I NF 5

4-9n*/3O-N21
I

In n •*/ 3. --N31

n,~ + n 2+n3- z

EXIT

SVALUES OF loge lr(s) STORED IN CONSECUTIVE LOCATIONS Uh, U2, --.,U200 IN INCREASING
ORDER OF S FOR s=1/2(1/2)100, e.g., UI40 CONTAINS Iogrm'i).

1/2 loge 27r"= 0.9189 3853 3204 67

n3 IS NOT NEEDED IF >5XIO-13
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DERIVATIONS OF:
(,18), (19), (20); (48)2 (57); (59), (60), (61); (69), (70)

In this appendix derivations are given for equations (18),

(19), (20); (48), (57); (59), (60), (61); (69), (70).

A. Derivation of (18), (19), (20)

Equation (18) is given by

Ix(a,b) = x Ix(a - l,b) + (1 - x) Ix(a,b - i) . (i8)

This equation is proved by first establishing the relation

Ix(a + l,b - I) = Ix(a,b) - r(a + b) xa (1 -

p(a + 1) p(b)

(107)

An integration by parts on Bx(a,b) gives

Bx(a,b) a - 1 Bx(a - 1,b + 1) - xa-1 ( - x)b (108)
X b b

Therefore

Bx(a + l,b - 1) a Bx(a,b) - xa ( - x)W . (109)
b -i b -i

Multiplying (109) by P(a + b)/[r(a + 1) r(b - 1)] leads directly
to (107).

The proof for (18) follows. From (107)

Ix(a - l1,b) - Ix(ab - 1) = xa-1 (! - x)b-1 r(a + b
r(a) r(b)

_ xa-1 - x)b- 1 r(a + b)

p(a) r(b)

(a - 1 b - 1 (110)
a +b -i1 a +b -i1

Now assuming x ? 0,1, (110) may be written as
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d [iI(a,b)] [ d [x Ix(a - l,b)]+ d [(l - x) Ix(a,b - 1)]
dx dx dx

(111)

Carrying out the obvious integration, gives (18) plus an integra-
tion constant which can be shown to vanish by letting x tend to
zero. It is obvious that (18) also holds for x = 0 and x = 1,
and the proof is complete.

In order to derive (19), the following relation is used:

b I,(a,b + 1) + a Ix(a + l,b) = (a + b) Ix(a,b). (112)

Equation (112) is proved by writing B,(a,b) as

X
Bx(a,b) =:f ta-1 (1 _ t)b-I [(l _ t) + tjdt

0

= Bx(a,b + 1) + BX(a + l,b). (113)

Multiplying (113) by r(a + b + l)/[L(a) r(b)] and using (45)
gives (112). The index b is reduced by unity throughout (112);
this does not affect the validity of the relation, and subsequently
Ix(a,b) as given by (107) is substituted for the second term on the
left hand side of (112). The result, after some trivial algebra,
is

Ix(a,b) : Ix(a,b - 1) + _(a + b - 1) xa (i _ x)b-1 , b 1. (114)
r(a) r(b)

When b 1, I,(aO) is to be interpreted as zero.

By applying (5) to (114), or by manipulations similar to those
used for deriving (114), another useful result is obtained,

Ix(a,b) = Ix(a- lb) - i(a + b - 1) xa-i (1 - x)b , a
p(a) p(b)

where I,(O,b) _0 in (115). Equations (19), (20) follow from (107)
by setting b = 3/2 for (19),and by setting a = 1/2 and increasing
b by unity throughout (107) for (20). If one subtracts (115) from
(114) the result is equivalent to (107).
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B. Derivation of (48), (57)

Equation (48) follows easily by writing (114) as a tele-
scoping series, where b is replaced by a running index i, such that

J
Ix(a.9b) = Ix(ajj) F Z [Ix(a,i) -Ix(a,i- 1)]

i=2i

7J xa F(a + i - i) (i - x)i- 1  (116)
i=1 r(a) r(i)

which is also (48).

Equation (57) follows easily also by using (45). Thus

a_ xa_ (1-_x)' r(a_+ i)/Ir(a) r(i +_1)]

ai xa (1 - x)'-' r(a + i - 1)/[r(a) r(i)]

(l - x) a + i (117)
i

C. Derivation of (59), (60), (61)

As in deriving (48), (59) is obtained by writing (114)
as a telescoping sum. However in this case, b = j - 1/2 and

J-i
Ix(a,b) - Ix(a,i/2) =Z [Ix(a,i + 1/2) - Ix(a,i - 1/2)]

i=1

J-1 xa r(a + i - 1/2) X~-1/2

F, r(a) r(i + 1 2)

(118)

which is the result desired.
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Equation (60b) is directly deducible from (118) by setting
a = 1/2. The equation (60a) is also easily proven by applying (S)
to (60b). The term Ix(l/2, 1/2) is given by

X

Ix(1/2, 1/2) _= (r(1)/[r(1/2) r(1/2)) dto, (119)

The transformation

t = sin2 e, 0 _< o -< /2

applied to the integral of (119) gives for Ix(l/2, 1/2),

sin-' yE

1 l/2, 1/2) 2 sin 0 cos 0 do =. sin- I/x (120)sin 0 cos 0 T

which is equivalent to (61).

D. Derivation of (69), (70)

These results are obtained in exactly the same way that
(117) was generated.
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DERIVATIONS OF: (91), (92).
PROOF THAT Un,r(U) : Un, r(o) , 0 < u < 1

In this appendix the three following results are proved:

(A) Equations (91), (92)

(B) The maxima oflUnri decrease monotonically as a function

of u on the interval [0,11.

A. Proof of Equations (91) and (92)

In (89), Un,r is defined accordingly

Unr d-r [(l - u 2 )n] , 0 < u • i (89)
dur

Equation (94) states that Un,r is given by

[r/2]

Un r = i ( 1 )r-i __ 2 r-2i. r'nr(n + 1) ur-21 (i -u
2 )n-r+i

i=0 i.(r - 2i)-, p(n - r + i + 1)

n >- r, (91)

where [r/21 represents the greatest integer in r/2. The proof is
by induction. Thus for r = 0, 1, 2,(91) is easily seen to be
valid. It is necessary to show (91) holds for U ,r±1 assuming it

holds for Unr; Un,r+i would be given by

u 2 1)r+-i 2 (r + 1)1, r(n + 1)
n,r+l Y- il(r - 2i + 1)' f'(n - r + i)

J=o

ur-21 +l (1 - u2)n-r+i-- (121)

The proof follows:

Introduce Ai, such that

Ai (. l)r-i 2r-2i r'r(n +1) > 0; A1  0, 1 <0.
i'(r - 2i)f'P(n - r + i + 1)

(122)
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Now differentiating (91), and subsequently using (122) one obtains

d [Un ] ( 1 )r+.. 2 r+ 1 r(n + 1 ur+1 (l - u2)n-r-l

du r(n - r)

[r/2]
+ [(r- 2i + 2) A,_, - 2(n - r + i) A]ur 2 il

i =l

S(1 - u2)n-r+i-1 + (r - 2 [r/2)) A[r/21 ur- 2 [r/2]

.0(1 - u)n-(r-[r/2]) (123)

The constant factor under the summation sign of (123) can be
simplified. Thus

(r - 2i + 2) A - 2(n - r + i) Ai

is equal to

( 1 )r-i+1 2 r-21+2 r'r(n + 1)

(i- Z)!(r - 2i + l)'r(n - r + i)

+ ( 1 )r-i+l 2r-2+l rr(n + 1)
i'(r - 2i)!'(n - r + i)

S( 1)r-i+l 2 r-21+l (r + 1)'r(n + 1) (124)
i'(r - 2i + m)'.r(n -r + i)

The last term in (123) is equal to the r +i] term of (121) for r

odd. The i] term of (121) for r even is included in the [r/21

term of the sum in (123). It therefore follows that (123) is equal
to (121), and the proof is complete.
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Equation (92) can be derived as follows:

Un+a r+2 d r+2 [(1 - u2)n+a] dr+2 [(l - U2 ) ( - u 2 )n], (125)
Sdur+

2  dur+2

andby Leibnitz's rule for obtaining the (r + 2 )th derivative of a
product, it is easily shown that

U (l- u 2 )U - 2(r + 2) u U' - (r + 1) (r + 2) U
n+lY r+2 n r n.,r n ,r

(126)

However
U~~ ~ n1r2 dr1U2)n+l• dr+l ( )Ul-u2nU_ dr+l dr(ii

Un+1,r+2 r-1du I dur+l

= - 2(n + 1) -dI1l [u(l - u2)n]
dUr+1

= - 2(n + 1) [u Unr + (r + 1) Un r1 , (127)

where Leibnitz's rule was employed again to obtain the last equa-

tion. Subtracting both sides of (127) from both sides of (126)

gives

(i- U2 )U UU,r + (r + 1) (2n - r) Un~r = 0,

(92)

which is equation (92).

B. The absolute values of the extrema of (89) decrease as

a function of u on 10,11 provided n > r + 1/2. The proof for this

statement was suggested by techniques used by Szego in [13, Chap-

ter VIII.

Consider a functon f such that

f = A y2 (u) + p(u)(Y')2, (128)
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where

A is a positive constant, and q•u) is non-negative for u in
[OI]. Therefore

f Ž!0~

and

f' = y' [2cpy" + cp'y' + 2Ay . (129)

Now let

,1 ( - u2) 2A (r + 1) (2n - r)

(130)

Then, after substituting (92) into (129)

f' = 2y' I[- (n - r - 1/2) uy'], 0 _ u < 1 . (131)

Therefore it is concluded

f' < o if n > r + 1/2, u 0., y' 0 , (132)

where the inequality of (132) also insures A as defined in (130)
to be positive. Since f, is negative on (0,1) at points where
y' X 0, this means that f is a decreasing function of u on [0,1].
The clinching argument follows by considering those values of u
for which y'(u) = 0, on [0,11, i.e., the extrema points of y,
which we call ur. For such u, (128) can be written as

Y2 (Um) = f(um)/A . (133)

But since f is a decreasing function of u, then y2 (um) cannot

increase as the um increase from 0 to 1. If r is even, u = 0 is
a point of the set turn, because it is evident from (91) that
y'(O) = Un,r+1(0) = 0. If r is odd, u = 0 does not belong to the

set urnm). Thus

1U.n,r(O)l > JUn, r(uA), 0 < u •1 1, r even . (134)
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The result which has Just been proved can also be deduced directly

from a theorem given by Tricomi, [16; p 99]. The theorem essentially
states that if a differential equation has the form

d-- ýpu) + p)Y = 0 '15

such that

a) p(u) and P(u) and their first derivatives are continuous on
(a, b), i.e., p(u), P(u) are in C' on (a, b),

b) [p(u)P(u)] is a non-decreasing (non-increasing) function of

u in (a,b),

c) P(u) o 0 in (a, b),

then the maxima and minima which occur in (a, b) of any integral

y(u) of (135) are such that the corresponding values of 1yf form a

non-increasing (non-decreasing) sequence. If the hypotheses of this

theorem are satisfied on the half-open interval [a, b), then it is
easily shown by going through Tricomi's proof step by step that the

conclusion holds on the half-open interval, that is the extrema on
[a, b) are such that the corresponding values of Ill form a non-

increasing (non-decreasing) sequence.

Equation (92) is easily put in the form of (135), (see [16;
p 96]), so that (92) becomes

d F( -u2)-(n-r-i) dy + (r + 1) (2n - r) (1 _ U2 )- (n-r)y = 0
du L!dui=

where 
(136)

S-(n-r-l) -(n-r)

p(u) (1 - u 2 ) , P(u) = (r + 1) (2n - r) (1 - u2 )

(137)

On [0, 1), p(u) and P(u) are obviously in C', P(u) 0, and

[p(u)P(u)] is non-decreasing provided n Ž r + 1/2. Therefore

the hypotheses of the modified theorem (for the half-open

interval) are satisfied, and the conclusion of the modified

theorem holds and implies the result which was to be proved.
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